Deep learning Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Material type: TextSeries: Adaptive computation and machine learningPublisher: Cambridge, Massachusetts : The MIT Press, [2016]Copyright date: ©2016Description: 775 p. illustrations (some color) ; 24 cmContent type:- text
- unmediated
- volume
- 9780262035613
- 006.31 22
- Q325.5 .G66 2016
Item type | Current library | Collection | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|---|
Books | Liberty General Stacks | Reference | 006.31 (Browse shelf(Opens below)) | In transit from Liberty to Tan Tao University since 07/17/2024 | A-2022-0036 | |
Books | Liberty General Stacks | Reference | 006.31 (Browse shelf(Opens below)) | In transit from Liberty to Tan Tao University since 07/17/2024 | A-2022-0037 |
Browsing Tan Tao University shelves, Shelving location: General Stacks, Collection: Reference Close shelf browser (Hides shelf browser)
Includes bibliographical references (pages 711-766) and index.
Applied math and machine learning basics. Linear algebra -- Probability and information theory -- Numerical computation -- Machine learning basics -- Deep networks: modern practices. Deep feedforward networks -- Regularization for deep learning -- Optimization for training deep models -- Convolutional networks -- Sequence modeling: recurrent and recursive nets -- Practical methodology -- Applications -- Deep learning research. Linear factor models -- Autoencoders -- Representation learning -- Structured probabilistic models for deep learning -- Monte Carlo methods -- Confronting the partition function -- Approximate inference -- Deep generative models.
There are no comments on this title.